抽象的

A Novel detection algorithm for performance analysis of MIMO-OFDM systems using equalizer over a Rayleigh fading channel

Dinokumar Kongkham, P.Malarvezhi, R.Kumar

Multiple Input Multiple Output (MIMO) Orthogonal Frequency Division Multiplexing(OFDM) systems have recently emerged as key technology in wireless communication systems for increasing data rate and system performance. The effect of fading and interference can be combated to increase the capacity of the link. MIMO systems uses Multiple Transmit and Multiple Receive antennas which exploit the multipath propagation in rich scattering environment. The matrix channel plays a pivotal role in the throughput of a MIMO link since the modulation, data rate, power allocation and antenna weights are dependent on the channel gain. When data rate is transmitted at high bit rate, the channel impulse response can extend over many symbol periods which leads to Inter-Symbol Interference(ISI). ISI always caused an issue for signal recovery in wireless communication. In order to reduce the complexity of MIMO system, various detection algorithm such as Zero forcing(ZF), Minimum Mean Square Error(MMSE), Maximum Likelihood(ML) and a novel algorithm namely Constant Modulus Algorithm(CMA) are proposed that reduce bit error rate(BER) via spatial multiplexing. QPSK modulation is treated here for simulation purpose.Simulations are done by MatLab that shows BER vs. signal-noise ratio (SNR) curve of Constant modulus algorithm(CMA) equalizer exceeds that of ZF, MMSE and ML equalizer. In this paper antenna configuration is used.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证