抽象的

A New Ranking Scheme for Multi and Single Objective Problems

A R Khaparde , V M Athawale

Evolutionary algorithms (EAs) have received a lot of interest in last two decade due to the ease of handling the multiple objectives. But one of criticism of EAs is lack of efficient and robust generic method to handle the constraints. One way to handle the constraint is use the penalty method .in this paper we have proposed a method to find the objective when the decision maker (DM) has to achieve the certain goal. The method is variant of multi objective real coded Genetic algorithm inspired by penalty approach. It is evaluated on eleven different single and multi objective problems found in literature. The result show that the proposed method perform well in terms of efficiency, and it is robust for a majority of test problem

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

学术钥匙
研究圣经
引用因子
宇宙IF
参考搜索
哈姆达大学
世界科学期刊目录
学者指导
国际创新期刊影响因子(IIJIF)
国际组织研究所 (I2OR)
宇宙

查看更多