抽象的

A Comparative Study of Feature Extraction Techniques for Speech Recognition System

Pratik K. Kurzekar , Ratnadeep R. Deshmukh , Vishal B. Waghmare , Pukhraj P. Shrishrimal

The automatic recognition of speech means enabling a natural and easy mode of communication between human and machine. Speech processing has vast applications in voice dialing, telephone communication, call routing, domestic appliances control, Speech to Text conversion, Text to Speech conversion, lip synchronization, automation systems etc. Here we have discussed some mostly used feature extraction techniques like Mel frequency Cepstral Co-efficient (MFCC), Linear Predictive Coding (LPC) Analysis, Dynamic Time Wrapping (DTW), Relative Spectra Processing (RASTA) and Zero Crossings with Peak Amplitudes (ZCPA).Some parameters like RASTA and MFCC considers the nature of speech while it extracts the features, while LPC predicts the future features based on previous features

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

学术钥匙
研究圣经
引用因子
宇宙IF
参考搜索
哈姆达大学
世界科学期刊目录
学者指导
国际创新期刊影响因子(IIJIF)
国际组织研究所 (I2OR)
宇宙

查看更多